Vertex representations of quantum affine algebras.

نویسندگان

  • I B Frenkel
  • N Jing
چکیده

We construct vertex representations of quantum affine algebras of ADE type, which were first introduced in greater generality by Drinfeld and Jimbo. The limiting special case of our construction is the untwisted vertex representation of affine Lie algebras of Frenkel-Kac and Segal. Our representation is given by means of a new type of vertex operator corresponding to the simple roots and satisfying the defining relations. In the case of the quantum affine algebra of type A, we introduce vertex operators corresponding to all the roots and determine their commutation relations. This provides an analogue of a Chevalley basis of the affine Lie algebra [unk](n) in the basic representation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted vertex representations of quantum affine algebras

Recent interests in quantum groups are stimulated by their marvelous relations with quantum Yang-Baxter equations, conformal field theory, invariants of links and knots, and q-hypergeometric series. Besides understanding the reason of the appearance of quantum groups in both mathematics and theoretical physics there is a natural problem of finding q-deformations or quantum analogues of known st...

متن کامل

Quantum Z-algebras and Representations of Quantum Affine Algebras

Generalizing our earlier work, we introduce the homogeneous quantum Z-algebras for all quantum affine algebras Uq(ĝ) of type one. With the new algebras we unite previously scattered realizations of quantum affine algebras in various cases. As a result we find a realization of Uq(F (1) 4 ). 0. Introduction In 1981 Lepowsky and Wilson introduced (principal) Z-algebras as a tool to construct expli...

متن کامل

2 9 M ay 2 00 2 REPRESENTATIONS OF DOUBLE AFFINE LIE ALGEBRAS

The representation theory of Kac–Moody algebras, and in particular that of affine Lie algebras, has been extensively studied over the past twenty years. The representations that have had the most applications are the integrable ones, so called because they lift to the corresponding group. The affine Lie algebra associated to a finite-dimensional complex simple Lie algebra g is the universal (on...

متن کامل

Fe b 19 98 Level One Representations of Quantum Affine Algebras U q ( C ( 1 ) n )

We give explicit constructions of quantum symplectic affine algebras at level 1 using vertex operators.

متن کامل

Two-parameter quantum vertex representations via finite groups and the McKay correspondence

We introduce two-parameter quantum toroidal algebras of simply laced types and provide their group theoretic realization using finite subgroups of SL2(C) via McKay correspondence. In particular our construction contains a realization of the vertex representation of the two-parameter quantum affine algebras of ADE types.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 24  شماره 

صفحات  -

تاریخ انتشار 1988